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invar alloys 
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Abstract. The theory of thermally activated motion of dislocations yields a cusp in the graph 
of activation free enthalpy AG versus temperature when applied to FeNi-invar alloys. This 
is attributed to a magnetic induced hardening of FeNi. A theory of thermal activation is 
developed taking into account the magnetic hardening and the results are compared with 
CKSS and yield stress measurements of FeNi and FeNiMn alloys. 

1. Introduction 

The plastic deformation of metals by dislocation glide is controlled by various processes, 
such as viscous drag [l], diffusion of interstitials [2], the effect of inertia [3], quantum 
vibration [4] and thermally activated motion of dislocations. 

This paper deals with a theoretical model of thermal activation for a magnetic 
material and its comparison with experiment. 

The theory of thermal activation analysis [5, 61 has been applied to various metals 
and alloys yielding information on the obstacle and the glide process, qualitatively as 
well as quantitatively. At first, thermal activation was expressed in terms of activation 
energy [ 5 ] ;  however, today it is generally accepted for the analysis of tensile test experi- 
ments to use the free enthalpy, which is the corresponding thermodynamic function for 
experiments at constant t, T [6]. A comprehensive evaluation of the theory was given 
by Surek and co-workers [7]. This evaluation will be referred to as standard activation 
analysis. 

Although thermal activation analysis has been successfully applied to many metals 
and alloys, it was shown to fail in the case of FeNi-invar alloys [8]. These ferromagnetic 
FCC alloys (cNi = 35%) are characterized by a very small thermal expansion coefficient 
[9] below the Curie temperature (approximately 500 K). The small thermal expansion 
is widely accepted to be of magnetic origin, as shown by the correlation between magnetic 
ordering (i.e. Curie temperature) and size of thermal expansion coefficient. 

Beside the archetypal FeNi system various other alloys reveal invar properties [lo], 
e.g. the well-known Fe,Pt [ll] or YMn2, which was reported [12] to have the largest 
volume magnetostriction discovered so far. 
t Present address: ERN0 Raumfahrttechnik GmbH, Hiinefeldstrasse 1-5,2800 Bremen, Federal Republic 
of Germany. 
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Although invar alloys in general and especially FeNi alloys have been widely inves- 
tigated, e.g. by magnetization measurements [13, 141, neutron scattering [15, 161, 
Mossbauer measurements [17,18] and others [19], very few investigations have dealt 
with the plastic deformation of FeNi [20-25] and the corresponding dislocation structure 
[26-281. The critical resolved shear stress (CRSS) t O ( T )  of FeNi-invar shows a sharp 
increase somewhat below the Curie temperature, T,, yielding a high CRSS at low tem- 
perature. The dependence of z0 on temperature as well as the Ni concentration is not in 
accordance with theories of solid solution hardening [29], and this is widely accepted to 
be due to a magnetically induced hardening [20-25]. The magnetic origin of this hard- 
ening was stringently demonstrated by an investigation of Fe,s(Ni,-,Mn,)35 alloys, 
where the magnetic hardening can be adjusted independently from solid solution hard- 
ening via the manganese content, x [24,25] (cf figure 2, later). 

For the archetypal FeNi-invar alloy the free activation enthalpy AG was calculated 
according to standard thermodynamic activation analysis [8,20] yielding a sharp peak 
in A G ( T )  at T 5 T, with anomalously high figures for AG. This unexpected finding, 
accomplished by means of standard activation analysis, was attributed to the extra- 
ordinary properties of FeNi-invar. It was supposed to be a magnetic effect because of 
the correlation between the A G ( T )  peak and the Curie temperature. 

Up to now magnetic effects have not been considered in the theory of thermal 
activation. Thus, the theory may not be applicable in the case of FeNi, where plastic 
deformation is controlled by magnetic hardening. This investigation is aimed at dev- 
eloping a model which takes account for magnetic effects, and to apply it to tensile test 
measurements of FeNi-invar alloys. Besides the calculation of the magnetic contribution 
to AG, our approach provides a generalized method to deal with additional effects in 
the field of activation analysis. 

2. Thermodynamic activation analysis 

In this section an equation will be derived to calculate AG from tensile test measure- 
ments. This equation will reveal the same structure as the results of [7] except some 
very small but important modifications. 

The basic interaction in our model is the magnetoelastic coupling, which is par- 
ticularly large in the case of invar alloys. In the vicinity of a dislocation the magnetization, 
M ,  is locally altered due to the dislocation strain field acting via the magnetoelastic 
coupling. This change in magnetization, AM, within asmallvolume, V(not the activation 
volume), around the dislocation is equivalent to a change in the magnetic moment, 
Am = VAM. When exposed to a magnetic field, h ,  the change in m yields a change in 
magnetic energy: 

AE = -hAm. (1) 

Principally this energy, AE,  represents the barrier which has to be surmounted by the 
dislocation during thermal activation. The details of the microscopic magnetic barrier 
are very complex [24,25]. However, the phenomenological theory of thermal activation 
depends on neither the origin nor on microscopic details of the barrier or interaction. 
Our approach to thermodynamic activation analysis is to extend the standard model 
[6,7]. Thus, the emphasis of the following evaluation is on the extension of this model. 
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Figure 1. Gibbs free energy and obstacle back stress of a rigid obstacle, from [7]. 

We take account for a magnetic alloy by supplementing the free enthalpy, usually given 
by 

G =  U +  PV - TS 

with a magnetic term yielding 

G = U f P V -  TS - hm. (2b)  
Here, U is the internal energy, P the pressure, V the volume, T the temperature, S the 
entropy, h the magnetic field, m the magnetic moment; po is omitted throughout this 
paper. 

Therefore we have three independent variables, namely p ,  T and (additionally) the 
magnetic field h. We assume the field h to consist of an externally applied magnetic field 
ha and an internal mean field h,: 

h = h a  + h,. (3) 
Exchange interactions between magnetic moments are represented by h,, which is 
assumed to be proportional to the magnetization, M ,  in the mean field approximation. 

The starting point of the thermodynamic activation analysis is the rigid obstacle 
(figure l), characterized by the obstacle back stress tB. The free enthalpy of activation 
is [7] 

AG = b /A:2 t g  dA - bt*(A, - A , )  (4) 

where t* = t, - t, is the effective stress, t, is the applied stress, z, the internal stress, b 
the Burgers vector, A, - A , the area swept out by dislocation during activation. AG is 
the change in free enthalpy produced by moving the dislocation from the equilibrium 
position A,  to the activated position A, .  The obstacle back stress z g ( A ,  T )  is usually 
assumed to be a product of a function g(A) and the shear modulus p ( T ) .  To allow for 
magnetic hardening, the obstacle back stress must be dependent on magnetic variables, 
too. Experimental results [20-25] clearly reveal the influence of magnetic ordering on 
the CRSS (i.e. in the mean field approximation, a dependence on h,) .  The dependence of 
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the shear modulus, p ,  on magnetic ordering is evident from measurements of shear 
modulus versus temperature [30]. We assume g as well as p to be also a function of h. 
We write the obstacle back stress in a magnetic alloy as follows: 

TB(A, T ,  h )  = s (A,  h)pu(h, T ) .  ( 5 )  

During the activation process the dislocation moves at constant effective stress z*  from 
position A to A z  (see figure 1) yielding a change in enthalpy, H ,  and entropy, S, (in the 
standard model): 

AG = AHr= - T AS,* .  (6) 
(Remark: the index at S and H shows which stress is constant.) In a magnetic alloy, the 
dislocation movement additionally yields a change in the magnetic moment, m: 

AG = AH,* - T AST+ - h Am. (7)  
The change of magnetic moment, i.e. the change of magnetization within a small volume 
in the vicinity of the dislocation, is supposed to be the origin of the invar hardening; the 
interaction between dislocation and magnetization is provided by the niagnetoelastic 
coupling. Details of this interaction were tackled on a phenomenological scale [21-231 
and on a microscopic scale [24,25]. However, neither the details of the magnetization 
change nor its size have any influence on the activation analysis. 

First, the change in entropy, AS, during activation is calculated. The total differential 
of the free enthalpy in terms of T, z x  and h is: 

d A G =  -AST.  d T -  b(A2 - A , ) d z "  - A m d h  (8) 

yielding 

As,*,h = -(dhG/dT),*,h 

= - [ l / p ( T ,  h ) ] ( a p / a T ) , [ A G  + b(A2 - A,)T*].  (10) 
Together with equation (7) we get the free enthalpy of activation: 

A H , .  - hAm + b(A1 - A,)T"(T/,U)(a,LL/aT)h 
AG = (11) 

- ( T / V ) ( d p / a T ) h  

Equation (11) resembles equation (18) of reference [7] except for the term hAm and the 
constant h regarding the derivation of the shear modulus ,U, both features characterizing 
the magnetic obstacle. 
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We have calculated the free activation enthalpy AG as a function of the effective 
stress, t*. Now, z*  cannot be experimentally determined but t, can. To derive 
AG(z,, h ,  T )  we evaluate the total differential AG = AG(z* ,  T ,  h )  and substitute z* .  

The effective stress z*  = t, - zi  is assumed to be temperature dependent via the 
internal stress and additionally dependent on the magnetic field h ,  i.e. z*  = t* (z , ,  T ,  h).  
With z*  we get AG in terms of z,, h,  t: 

dAG = (aAG/aT),*, ,  d T +  ( r 3 A G / d ~ * ) ~ , ~  d z *  + (8AG/dh)T,r- d h  (12) 

yielding, at constant z,, h:  

The second term of equation (13) can be evaluated assuming z, to be proportional to 
p(T,  h )  [1, 6,7]. Together with equation (lo), we get 

Equation (14) yields the free activation enthalpy in terms of z,, Tand h: 

All quantities in equation (15) except A H r d  and hAm can be determined by experiment, 
at least theoretically. 

In the calculation shown above one single dislocation in front of an individual obstacle 
has been considered on a microscopic scale. Both A H T d  and h Am have to be determined 
by a macroscopic model and a statistical treatment, respectively. In the ioliowing, the 
macroscopic strain rate Ci produced by an ensemble of dislocations is related to the 
average free enthalpy of activation. 

Usually, for the-strain rate an Arrhenius-type equation is assumed to be applicable 
[I, 5-71; 

i. = .io e x p ( - A G / k T ) .  (16) 

It is generally accepted that the dependence of i3 on z,, h ,  Tis small or even negligible, 
thus Po is assumed t~ be constant for the differentiation with respect to rd,  h ,  T .  Equation 
(16) yields 

(dhG/aT) , , ,  = - k  ln(i/&,) = At?/T. (17) 

Thus 

Equation (18) can be evaluated by means of the total differential of AG(za, T ,  h )  and 
ta(i,  h ,  T ) ,  respectively. 
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The dependence of the applied stress on the magnetic field h characterizes the 
magnetic obstacles. Combined with equation (18) the total differentials of AG and z, 
yield 

AHTa - h Am = T(aAG/az , )h .~(az , /aT) , ,h .  (19) 

Now, equation (15) can be transformed yielding the free activation enthalpy in terms of 
ta, f. and T 

This equation completely resembles the result of the standard activation analysis [6,7], 
except the constant h for the differentials, which is the essential difference in thermal 
activation regarding the effect of magnetic hardening. 

3. Experimental determination of activation parameters 

The free enthalpy of activation shall be determined for Fe65Ni,j in zero applied field 
(h = h,) by means of equation (20). The total differential of ?,(d, h ,  T )  at constant d and 
h yields 

( a t a / a  T1i.h = ( 8 7 a / a  - (aza /ah)  T.i(dh/dT)* (21) 

The difference from the standard case is shown by the second terms in (20) and (21), 
respectively. In zero applied field (h,  = 0) the field dependence of z, can be transformed 
assuming h = hi - M (mean field approximation). Thus, (21) yields 

(az,/aT), ,h = ( d t , / d T ) ,  - ( d t , / d M ) , i  dM/dT. (23) 

In the case of ha = 0 the difference between our extended activation analysis and the 
standard activation analysis vanishes for T > T, as well as for T-, 0: the internal field 
hi - M is constant above T, (equal to 0) and for T-, 0, thus d hi/d T - dM/d Tis zero, 
the second terms of equations (21)-(23) are zero and (20) transforms to the usual result 
(cf [6,7]). On the other hand the difference is large for T 5 T,, because dhi /dT - 
dM/d Tis particularly large in this temperature range (cf figure 2 later). 

The quantities ( d t , / d  qr, dp/dTand dM/d Tcan be measured as usual or compiled 
from literature. However, both terms (a t , /dM), ,  and (a,u/aM), are not easy to de- 
termine by experiment, because an external magnetic field h, of some 1000 Tesla, which 
would be strong enough to change the magnetization in a magnetic domain and allow 
its influence on z, and p to be determined, is not available. (Remark: a change of the 
global magnetization is not relevant, because it corresponds to a change in the position 
of the domain walls only and not to the magnetization change of the domains.) 

The influence of (a z , / a M ) , ,  was estimated indirectly: the magnetization of the 
domains of specific alloys at a given temperature cannot be changed by external means 
to measure dz,/dM; instead we measured the applied stress z, of alloys having similar 
compositions but different magnetizations M .  This task was performed with the ternary 
Fe,,(Ni, -xMn,)3 alloys, where normal solid solution hardening was shown to be nearly 
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Figure 2. (O), Free activation enthalpy of Fe6sNi35. taking into account magnetic hardening 
according to equation (20); (x) ,  calculation neglecting magnetic effects is shown for com- 
parison. 
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Figure3. YieldstressofFe65(Ni,-,Mn,)3s alloys from 124,251; Curie temperatures from [33]. 
(Curves are drawn as a guide to the eye.) 

independent of the manganese content x but the magnetic hardening varies with M via 
x [24,25]. Thus, alloys with different x-values have only different yield stresses due to 
different magnetic properties. The normal solid solution hardening is nearly constant , 
because the concentration of solute atoms is independent ofx (i.e. c = cNi  + cMn = 35%) 
and the size parameters of Ni and Mn determining solid solution hardening are similar, 
as revealed by lattice parameter measurements [31]. This is, of course, a rough 
estimation, but may be sufficient for a principal validation of the theory. The term 
dp/dM could be calculated by a similar method, however, the influence on equation 
(20) is small. Thus, we neglected dp/dMfor  this rough estimation. 

The free activation enthalpy of Fe65Ni,5 derived by means of equation (20) is shown 
in Figure 2 (figures calculated according to standard activation analysis are shown for 
comparison). For figure 3 (c.f. equations (20), (21)) we used (dz,/aT), data from 
[24,25]. The temperature dependence of the magnetization M for Fe65Ni35 was taken 
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from [13,14]. The dependence of M on z, for Fe65Ni35 was calculated from 
Fe6@il -J4nJ3, data by combining ( d ~ / d x ) ~  taken from figure 3 and ( d M / ~ 3 x ) ~  from 
[32,33] yielding (dt,/dM),at x = 0. (Remark: results a tx  > 0, although determined as 
well, are not relevant for AG of Fe65Ni35). 

4. Discussion 

Three ranges of temperature can be distinguished in figure 2. Firstly, for T T,, both 
extended as well as standard theory yields similar figures for AG because dM/d T = 0. 
For T d T, the cusp in AG is removed in our theory, i.e. the difference from standard 
activation analysis is particularly large in this area because d M/d Tis large (the magnetic 
obstacles are strongly temperature dependent-not proportional to ,U( T)-which is not 
accounted for by the standard model). Finally, for T > T, both theories yield very high 
figures for AG. In particular, in the range just below T, the accuracy of AG derived from 
experimental data by means of the extended theory is reduced, because AG is the 
difference of two values of the same order of magnitude (cf equations (20), (23)). We 
conclude from figure 2 that the anomaly in the free enthalpy of activation AG, i.e. the 
cusp at T < T,calculated by meansof standard activation analysis, iscaused by neglecting 
the magnetic effects. The theory derived in section 2 removes this anomaly (details in 
the AG( T )  curve at T < T, shall not be assessed due to the limited accuracy-see above). 
Thus, the results of our theory support the idea of magnetic-induced hardening of invar. 

Although the cusp in AG vanishes according to the extended theory (cf figure 2). 
the figures for AG are still high for T > T,. The very large activation enthalpy at T > T, 
and M = 0 cannot be explained by means of equation (20). 

Up to now, this problem has not been investigated in detail, however, some clues do 
exist [24]. For FeNi polycrystals the influence of carbon impurities on the activation 
volume and activation enthalpy was investigated [20]. Generally, the activation volume 
V increases with increasing carbon concentration cc, yielding an increase in AG (cf 
equation (20)). An influence of cc on V, as measured by strain rate changes, may indicate 
an influence of cc on the dislocation velocity. Such a dependence of carbon atoms on the 
dislocation velocity is well known [2]. The influence of interstitials on measurements of 
Vwas detailed in reference [34]. The stress changes induced by strain rate changes during 
activation volume measurements can be lower than expected or even negative due to 
the diffusion of interstitials. Appreciable effects may even occur at concentrations below 
0.1 at .% [35]. An activation analysis, which accounts for diffusion effects in FeNi, was 
outlined [24] but has not yet been elaborated upon. The tensile test measurements were 
accomplishedwith alloys containingapproximatelyO.1 at. % carbon. Thusit isconcluded 
that carbon impurities may cause the large free enthalpy of activation at T > T,. 
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